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ABSTRACT

Latent Factor Models (LFMs) based on Collaborative Filtering (CF)

have been widely applied in many recommendation systems, due to

their good performance of prediction accuracy. In addition to users’

ratings, auxiliary information such as item features is often used to

improve performance, especially when ratings are very sparse. To

the best of our knowledge, most existing LFMs integrate different

item features in the same way for all users. Nevertheless, the atten-

tion on different item attributes varies a lot from user to user. For

personalized recommendation, it is valuable to know what feature

of an item a user cares most about. Besides, the latent vectors used

to represent users or items in LFMs have few explicit meanings,

which makes it difficult to explain why an item is recommended to

a specific user. In this work, we propose the Attention-driven Factor

Model (AFM), which can not only integrate item features driven

by users’ attention but also help answer this "why". To estimate

users’ attention distributions on different item features, we propose

the Gated Attention Units (GAUs) for AFM. The GAUs make it

possible to let the latent factors "talk", by generating user attention

distributions from user latent vectors. With users’ attention distri-

butions, we can tune the weights of item features for different users.

Moreover, users’ attention distributions can also serve as explana-

tions for our recommendations. Experiments on several real-world

datasets demonstrate the advantages of AFM (using GAUs) over

competitive baseline algorithms on rating prediction.
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1 INTRODUCTION

In recent years, personalized recommendation has attracted much

attention from both research community and industry. By consid-

ering users’ preferences, recommendation systems will have more

chance to attract users. Many researchers have found that it’s very

beneficial for personalized recommendation systems to give expla-

nations. Given reasonable explanations, users are more likely to

buy or try. Furthermore, explanations will help convincing users

that the system knows them very well and makes custom-made

recommendations for them.

There have been plenty of techniques such as content based

algorithms proposed to address this explainability problem. Besides,

some review-aware methods [14] based on sentiment analysis have

been newly proposed with good performance on some datasets.

However, these methods heavily rely on both quality and quantity

of users’ reviews. Besides, there are some users unlikely to show

personal preferences in their reviews, which makes it tough for

review-aware methods to capture users’ preferences.

Figure 1: Twousers’ attention distributions on different item

features generated by GAUs

Latent Factor Models such as Matrix Factorization (MF) [8] have

become very popular and welcomed by the research community

and industry. By representing features with latent vectors, it be-

comes very convenient to integrate various item features by adding

or concatenating. Item features are usually easy to collect and very

helpful, because users make decisions generally based on item fea-

tures. With many advantages, LFMs reach high prediction accuracy

on some benchmark datasets. However, LFMs also encounter some

problems in personalized recommendation. On one hand, when

conducting interactions between latent vectors of users and items,

LFMs ignore how users make decisions according to their prefer-

ence for various item features, which makes LFMs do it the same

way for all users. On the other hand, due to the latent representa-

tion, the lack of explainability weakens the ability of a personalized

recommendation system to gain users’ trusts.



To address the challenges above, we develop a novel CF-based

model named Attention-driven Factor Model (AFM) as a general

framework for personalized recommendation, which makes recom-

mendations according to users’ attention on different aspects of

the item. For estimating the users’ preferences via ratings and item

features, we propose the Gated Attention Units (GAUs) for AFM

to generate attention distributions for different users, as Figure 1

shows. With users’ attention distributions, AFM can reach a high

prediction accuracy and give feature-level explanations for users’

preferences.

The main contributions of this work are summarized into three

folds: 1) By considering users’ preferences, we develop a general

framework AFM for explainable personalized recommendation,

which can give reasonable explanations for users’ preferences and

keep a high prediction accuracy. 2) We propose the Gated Atten-

tion Units(GAUs) to extract explicit users’ preferences from latent

representations. 3) We perform experiments on several real-world

datasets to demonstrate the effectiveness and explainability of AFM.

2 RELATEDWORK

Latent Factor Models (LFMs) using Matrix Factorization (MF) have

been very popular, as they usually outperform other traditional

models on many benchmark datasets. Some typical LFMs have been

proposed for different problem settings, such as Singular Value De-

composition (SVD) [8], Non-negative Matrix Factorization (NMF)

[9] and Probabilistic Matrix Factorization (PMF) [12]. Since these

MF models learn solely from ratings, some other models which can

incorporate auxiliary information have been proposed. Factoriza-

tion Machine (FM) [10] and SVDFeature [3] are two of such models

and very famous for their good performance.

As deep learning (DL) techniques have gained immense success

on computer vision and natural language programming, lots of

efforts have been made to introduce deep learning techniques into

recommendation systems. Generally, DL has been applied to feature

extraction [13] and prediction [5, 6]. Since attention mechanism has

been proved quite effective in machine translation [1], attention-

based recommendation models have been developed recently. Chen

et al. [2] integrated LFM with Neighborhood Model based on item-

and component-level attention, which models the implicit feedback

in Multimedia Recommendation and performs well.

Apart from making prediction, there has been some researches

on recommendation explanation. A popular way to generate ex-

planation is by analyzing users’ preferences from their reviews.

Zhang et at. [14] extracted users’ preferences from their reviews

based on phrase-level sentiment analysis, which helps generating

personalized recommendations together with explanations.

To sum up, how to generate explainable recommendations and

keep a high prediction accuracy simultaneously has been one of

the major research questions for personalized recommendation.

3 ATTENTION-DRIVEN FACTOR MODEL

In this section, we first present the structure of AFM and explain

how AFM serves as a general framework for personalized recom-

mendation. We then introduce the Gated Attention Units (GAUs)

and how GAUs generate attention distributions for different users.

Lastly, we would like to show how AFM gives reasonable explana-

tions for users’ preferences.

Figure 2: Attention-driven Factor Model

3.1 General Framework

Figure 2 shows the structure of AFM. For training AFM, we need

user ratings and item features. Here, let m, n and k denote the

number of users, the number of item features and the size of latent

vectors respectively.

Feature Extraction Layer. The feature extraction layer is to

extract latent representations in dense vector format from original

inputs. According to different types of inputs, we can apply suitable

extraction methods, which can be very flexible under many situa-

tions. For those categorical inputs (i.e., user IDs and item IDs), we

can use the embeddingmethod. Besides, we can rescaled embedding

vectors by their input values, in order to account for continuous

valued inputs [10]. For those textual or pictorial inputs, we can em-

ployee deep learning techniques such as recurrent neural network

(RNN) and convolution neural network (CNN) to generate latent

representations. After feature extraction, we get ui ∈ Rk for the

i-th user, and a set of feature vectors Xj = {x j0,x j1,x j2, . . . ,x jn }

for the j-th item, where x j0 ∈ Rk denotes the embedding vector for

the ID of the j-th item and x jl ∈ R
k (l ∈ [1,n]) denotes the latent

vector for the l-th feature of the j-th item.

Attention-driven Integration Layer. The attention-driven in-

tegration layer is the core component of AFM. We formulate this

layer as:

vi j = fAI (ui ,Xj ), (1)

where fAI indicates the attention-driven integration transformation

andvi j denotes the integration vector of the j-th item driven by the

i-th user’s preference ui . Different from many other models which

simply integrates Xj by adding or concatenating, we introduce ui
implying the i-th user’s preference to conduct the integration.

Inspired by LSTM units [7] and Gated Recurrent Units [4], we

introduce the Gated Attention Units (GAUs) as a novel attention-

driven integration method, as Figure 3 shows.

We calculate vi j in two steps. First, we use GAUs to generate

users’ attention distribution as follow:

αi = softmax(Waui ), (2)

whereWa ∈ R(n+1)×k denotes the attention mapping matrix and

αi = {αi0,αi1,αi2, . . . ,αin } indicates the attention distribution of



the i-th user. The attention mapping matrix is the key of GAUs

and shared by all users, which can map the latent preference space

to the feature-level attention space. If we directly use different α
for different users, the number of parameters will increase from

k(n + 1) tom(n + 1), which may result in serious overfitting. The

sharedWa can also help learning the latent user vector u during

the training process. With the attention distribution α , we apply a

weighted sum for X to getv :

vi j =

n∑

l=0

αilx jl . (3)

From Equation (3), we can get to know some advantages of

GAUs. Supposing we are making movie recommendation for a user,

who cares most about the protagonist of a movie and pays little

attention to other features. In this case, the GAUs can learn a high

attention value to emphasize the protagonist feature, meanwhile

weaken the influence of other features. It’s worth to point out that

the embedding vector x j0 of the j-th item is quite necessary. Since it

is unlikely to collect all the features of the item in practical, the x j0
can serve as "others" for features which are not included in inputs.

Interaction Layer. The interaction layer performs the interac-

tion between the latent user vectoru and the latent item vectorv to

get the final prediction ŷ. There are plenty of interaction methods.

As usually used in Matrix Factorization (MF), we can apply an inner

product:

ŷi j = ui
Tvi j . (4)

Since the inner product simply combines the multiplication of latent

vectors linearly, He et al. [6] proposed to leverage a multi-layer

perceptron (MLP) to learn the user-item interaction function:

ŷi j = fMLP (ui ,vi j ). (5)

With non-linear activation function, we can enhance the ability

of AFM to learn the non-linear interaction. For training, we can

employ appropriate loss function for different tasks, which has

nothing special compared tomany other CF-based algorithms. Since

AFM is a framework, the overall model size and complexity are

decided by the methods adopted for each layer.

3.2 Personalized Explanation

Most of the existing factorization models succeed in prediction

accuracy but lack of reasonable explanations. We argue that a rec-

ommendation system without a clear description of the user’s pref-

erence is not personalized enough. With GAUs, AFM can learn

the feature-level attention distributions of different users. On one

hand, we can directly present the distribution diagrams to users,

which helps increasing users’ interests in our system and shows

our great concern for users. On the other hand, we send them inter-

esting messages while making recommendations, like "Dear XXX,

we have noticed your great interest in [feature], so we strongly

recommend these for you". Once obtaining the attention distribu-

tions of users, there are plenty of ways to give explanations for

personalized recommendations and persuade users.

4 EXPERIMENTS

Since the key contributions of this work are on the general frame-

work AFM and the GAUs, we conduct convincing experiments to

Figure 3: An illustration of the Gated Attention Unit. The at-

tention gate decides whether a feature is masked according

to the user’s preference.

show the performance on real-world datasets compared to some

state-of-the-art models and demonstrate the explainability of the

GAUs via case studies.

4.1 Experimental Settings

4.1.1 Datasets. We experiment with three datasets covering

two domains, movie and music recommendations. The characteris-

tics of the three datasets are summarized in Table 1. Ratings in all

the three datasets are from 1 to 5.

Table 1: Statistics of the datasets

Dataset User# Item# Rating# Sparsity

MovieLens 6,040 3,952 1,000,209 95.81%

Douban Music 27,395 31,744 884,224 99.90%

Douban Movie 15,989 10,604 1,061,850 99.37%

MovieLens1. This is actually one of the most popular bench-

marks for recommendation tasks. We use the version which con-

tains about 1 million ratings. Besides user IDs and item IDs, we

take the genres of movies as an item feature, which contains 18

different genres (e.g., comedy and adventure, etc).

Douban2. This is a well-known social media website in China,

where many people rate and comment on movies, music, books,

etc. We use two datasets, Douban Movie and Douban Music, crawled

from Douban. In Douban Movie, we take five features including

director, scriptwriter, protagonist, genre and product country. In

Douban Music, we only use the music genre as item feature. As you

know, people are more likely to care about the musician or album

information. Our purpose for using only music genre is to test the

ability of models to deal with features which are probably not very

effective.

4.1.2 Baselines. Since AFM uses auxiliary information of the

item, we compare our proposed AFM (using GAUs as the attention-

driven integration method) with following methods that can also

take extra item features as inputs:

- LibFM [11]. This is the official implementation of Factorization

Machine (FM) [10] released by Rendle.

- SVDFeature [3]. SVDFeature is a model for feature-based

collaborative filtering. We use the official implementation in our

experiments.

- CDL [13]. Collaborative Deep Learning (CDL) is a hierarchi-

cal Bayesian model using deep learning methods to extract latent

1http://grouplens.org/datasets/movielens/1m
2http://www.douban.com



Table 2: Performance of AFM compared to other baselines

MovieLens Douban Music Douban Movie

Model MAE RMSE MAE RMSE MAE RMSE

LibFM 0.698 0.880 0.533 0.665 0.576 0.735

SVDFeature 0.693 0.879 0.528 0.665 0.576 0.735

CDL 0.686 0.874 0.546 0.703 0.579 0.740

NFM 0.687 0.878 0.524 0.661 0.574 0.729

AFM 0.676 0.858 0.511 0.649 0.549 0.697

features, which can be easily extended to incorporate auxiliary

information.

- NFM [5]. Neural Factorization Machine (NFM) can not only

model the second-order feature interactions as FM does but also

model higher-order feature interactions by using the non-linearity

of neural network.

4.1.3 Implementation Details. As all the features in our ex-

periments are categorical, we transform them into one-hot inputs

for all models. For NFM and AFM, we both use one interaction layer

with sigmoid as activity function.

For each dataset, we conduct the five-fold cross-validation for

training and testing. We adopt mean absolute error (MAE) and

root-mean-square error (RMSE) as evaluation metrics. For a fair

comparison, we learn all models by optimizing the square loss using

SGD as optimizer and set 64 as the embedding size for all models.

4.2 Performance Comparison

Table 2 shows the performance of all models on the three datasets.

First, we can see that our proposed AFM is quite comparable to

other state-of-the-art models. On the first two datasets with only

genre as the item feature, AFM slightly outperforms other baselines.

It beats others by a large margin (about 4.4% over NFM) on Douban

Movie. We conjecture with more item features as inputs AFM may

be more effective. It is also worth to notice CDL, which uses item

feature vector plus a bias as latent item vector, performs not that

well on Douban Music. By checking the users’ attention distribution

generated by the GAUs, we find that there are nearly 80% users

have less than 20% attention on the music genre, which means the

music genre may be not a highly concerned feature for most users.

This actually explains why performance of CDL on Douban Music

is not as good as in other datasets. It also shows AFM can deal with

features which are not very effective by masking them with low

attention values.

4.3 Case Study

Here, we present some cases in datasets to highlight the perfor-

mance of the GAUs. First, let’s talk about two interesting users

from Douban Movie. One is probably a big fan of Christopher Nolan

(a world-famous director). About 40% movies he has watched are

directed by Nolan, and for nearly 80% of them he rates 5. Another

likes Donnie Yen and Jet Li (both are well-known Chinese KongFu

stars) very much and rates high for their movies. We present their

attention distributions generated by GAUs, just as Figure 1 shows

("User 1" for the fan of Nolan and "User 2" for the fan of Chinese

Kongfu stars), which quite accords with their ratings.

1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18

Figure 4: Distributions of two users’ favourite movies (rated

5) on 18 different genres, where each number denotes a cer-

tain genre. The deeper the color, the greater the proportion.

We also pick two users from MovieLens and visualize the distri-

butions of their favorite movies on the 18 genres, shown as Figure

4. The user above seems to prefer the 8-th and the 16-th genres

(drama and thriller), while the user below seems to care much less

about the genre compared to the one above. Calculated by GAUs,

the user above pays 66.5% of attention on the genre, while the user

below pays only 4.6%. This also conforms the fact very well.

5 CONCLUSION

In this work, we propose AFM as a general framework for personal-

ized recommendation, which addresses concerns on both prediction

accuracy and explainability. At its heart, we propose the Gated At-

tention Units (GAUs). The GAUs actually generate explicit attention

distributions from latent user vectors. Experiments and case studies

demonstrate the effectiveness of AFM and GAUs.
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